Loss of HIF-1α impairs GLUT4 translocation and glucose uptake by the skeletal muscle cells.
نویسندگان
چکیده
Defects in glucose uptake by the skeletal muscle cause diseases linked to metabolic disturbance such as type 2 diabetes. The molecular mechanism determining glucose disposal in the skeletal muscle in response to cellular stimuli including insulin, however, remains largely unknown. The hypoxia-inducible factor-1α (HIF-1α) is a transcription factor operating in the cellular adaptive response to hypoxic conditions. Recent studies have uncovered pleiotropic actions of HIF-1α in the homeostatic response to various cellular stimuli, including insulin under normoxic conditions. Thus we hypothesized HIF-1α is involved in the regulation of glucose metabolism stimulated by insulin in the skeletal muscle. To this end, we generated C2C12 myocytes in which HIF-1α is knocked down by short-hairpin RNA and examined the intracellular signaling cascade and glucose uptake subsequent to insulin stimulation. Knockdown of HIF-1α expression in the skeletal muscle cells resulted in abrogation of insulin-stimulated glucose uptake associated with impaired mobilization of glucose transporter 4 (GLUT4) to the plasma membrane. Such defect seemed to be caused by reduced phosphorylation of the protein kinase B substrate of 160 kDa (AS160). AS160 phosphorylation and GLUT4 translocation by AMP-activated protein kinase activation were abrogated as well. In addition, expression of the constitutively active mutant of HIF-1α (CA-HIF-1α) or upregulation of endogenous HIF-1α in C2C12 cells shows AS160 phosphorylation comparable to the insulin-stimulated level even in the absence of insulin. Accordingly GLUT4 translocation was increased in the cells expressing CA-HIF1α. Taken together, HIF-1α is a determinant for GLUT4-mediated glucose uptake in the skeletal muscle cells thus as a possible target to alleviate impaired glucose metabolism in, e.g., type 2 diabetes.
منابع مشابه
Loss of HIF-1α impairs GLUT4 translocation and glucose uptake
26 Defects in glucose uptake by the skeletal muscle cause diseases linked to 27 metabolic disturbance such as type 2 diabetes. Molecular mechanism determining 28 glucose disposal in the skeletal muscle in response to cellular stimuli including insulin, 29 however, remains largely unknown. The hypoxia-inducible factor-1α (HIF-1α) is a 30 transcription factor operating in the cellular adaptive re...
متن کاملOligomeric resistin impairs insulin and AICAR-stimulated glucose uptake in mouse skeletal muscle by inhibiting GLUT4 translocation.
The hormone resistin is elevated in obesity and impairs glucose homeostasis. Here, we examined the effect of oligomerized human resistin on insulin signaling and glucose metabolism in skeletal muscle and myotubes. This was investigated by incubating mouse extensor digitorum longus (EDL) and soleus muscles and L6 myotubes with physiological concentrations of resistin and assessing insulin-stimul...
متن کاملCacao liquor procyanidin extract improves glucose tolerance by enhancing GLUT4 translocation and glucose uptake in skeletal muscle
Hyperglycaemia and insulin resistance are associated with the increased risk of the metabolic syndrome and other severe health problems. The insulin-sensitive GLUT4 regulates glucose homoeostasis in skeletal muscle and adipose tissue. In this study, we investigated whether cacao liquor procyanidin (CLPr) extract, which contains epicatechin, catechin and other procyanidins, improves glucose tole...
متن کاملAnti-diabetic phytochemicals that promote GLUT4 translocation via AMPK signaling in muscle cells
Skeletal muscles are the largest tissue in our body and play an important role in maintaining glucose homeostasis. Cultured L6 myotubes and C2C12 myotubes are useful to construct simple glucose uptake assay systems, to screen various phytochemicals that promote glucose uptake, and to clarify their modes of actions. In skeletal muscles, insulin promotes glucose uptake by activating phosphatidyli...
متن کاملLoss of cortical actin filaments in insulin-resistant skeletal muscle cells impairs GLUT4 vesicle trafficking and glucose transport.
Study has demonstrated an essential role of cortical filamentous actin (F-actin) in insulin-regulated glucose uptake by skeletal muscle. Here, we tested whether perturbations in F-actin contributed to impaired insulin responsiveness provoked by hyperinsulinemia. In L6 myotubes stably expressing GLUT4 that carries an exofacial myc-epitope tag, acute insulin stimulation (20 min, 100 nM) increased...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 306 9 شماره
صفحات -
تاریخ انتشار 2014